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Abstract. An efficient and accurate algorithm for Monte Carlo simulation of a solution to 
the diffusion equation with drift and branching terms is derived by expanding the Green 
function operator in time. 

1. Introduction 

It has been shown (Ceperley and Adler 1980) that the task of finding a ground-state 
energy of a quantum system of particles can be reduced to solving 

(1 )  

where r is an  N-dimensional vector, E ( r )  and F ( r )  are given functions of, r (scalar 
and  vector, respectively), and  E ,  is an  eigenvalue of the linear operator T. Let the 
conditions of the problem imply that there is a real minimum eigenvalue ( E o  will, from 
now on, represent only this eigenvalue) which corresponds to a non-negative integrable 
eigenfunction f( r). This enables us to further require that 

def ~ 

-tV*f(r)+V * ( F ( r ) f ( r ) ) + E ( r ) f ( r ) =  Tf(r) = ~ a f ( r )  

f ( r )  d r =  1 I 
and interpret f( r)  as a probability density function of an N-dimensional statistical 
distribution (Kalos 1962). 

Finding an accurate numerical approximation to f(r) and E ,  can be achieved by 
employing a Monte Carlo technique. To this end, one needs to modify equation ( I )  
in the following fashion (Grimm and Storer 1969): 

-af(r, t ) / a r  = ( f -  E,)f(r, t )  (3) 

where f is now considered a function of r and t (called time, for convenience). 
Obviously, the stationary ( t  + CC) behaviour of a solution to (3)  will supply a solution 
to ( I ) .  

2. Monte Carlo simulation 

A simulation of a solution to (3) can be carried out easily once the Green function 
G(r’+ r, t )  of the  equation is known (Kalos 1962, Grimm et a1 1971). Such a simulation 
requires generating a set of M (usually hundreds) random vectors (called, in this 
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w context, configurations) I r ,  ’ r ,  . . . , r from an initial distribution f ( r ,  0) (which, in our 
case, can be chosen arbitrarily); then, for a specific value of t (called the time step), 
repeatedly advancing the M configurations according to G (  r ’ +  r, t )  until a target time 
is reached. 

The Green function itself should meet 

- a G ( r ’ + r ,  t ) / a t = ( f ‘ - E , ) G ( r ’ + r ,  1 )  (4) 

subject to 

G (  r ’c -  r, 0) = s ( r ’ -  r )  

where f‘ is an  exact analogue of operating on r ’  instead of r (in (41, E,  should be 
viewed as a pa ra i e t e r  rather than an eigenvalue). Unfortunately, in the case of our 
specific operator T (defined in ( I ) )  there is no general way of solving (4) analytically. 
Aiming to remedy the situation, we rewrite (3) as 

( 5 )  - df( r, ? ) / a t  = ( f” + f, + f2,,f(r, r )  

(the operation range of V is indicated by parentheses) and 

f 2 f  = ( E ( r )  - E,)$ ( 5 c )  

-a f /a t  = f j  i = O , l , 2  ( 6 )  

G , ( r ‘ +  r, I )  = (2n- t ) - ’  ’ exp[-(r’- r ) ’ / 2 t ]  ( 6 ~ )  

G l ( r ’ + r ,  t ) = s ( r ’ - r ( t ) )  (6h) 

One can easily find the individual Green functions of the following three equations 

to be 

and 

G 2 ( r ‘ +  r, t )  = exp[- (E(r )  - E , ) t ] 6 ( r ’ -  r )  

respectively. r ( r )  in ( 6 b )  represents a solution to 

d r (  f ) / d t  = F (  r (  t ) )  

subject to 

r ( 0 )  = r 

( 7 )  

(i.e. r (  t )  is a rather non-trivial function of r and I ) .  

operator defined by 
For a specific value of 1, each of our Green functions corresponds to a linear 

d ( t ) g ( r )  = G ( r ’ +  r, t ) g ( r )  drl, = r  (8)  

( g ( r )  is an  arbitrary function, the integration is done over the whole N-dimensional 
space). Thus, if f ( r ,  t o )  is a solution to (3) at a time to, 6 ( t ) f ( r ,  to) will provide the 
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corresponding solution at to+ t. Also, i f f (  r, x) is the stationary solution to (3), 

C(r)f =$ (9) 

As mentioned, the exact G(r '+- r, 1 )  (and, therefore, e(?))  is not known, and we 
have to resort to some convenient approximation of the same. One possibility is 
suggested by the following equation 

& t = & t * 6 I ( r * CO( t + 6( t 2 )  (10) 

where * denotes a convolution of two operators, defined in terms of the corresponding 
Green function by 

e,( 1 )  * 60( t)a G I (  r'  + r", r)Go( r"+ r, t )  dr"  ( 1 1 )  

etc, and 6( r 2 )  represents an  (undetermined) operator in the second and higher powers 
of r. Relation ( I O )  can be derived by writing 

5 
C ( t = ex p[ - t ( f - E , )  3 = ex p[ - t ( f, + f l  + -i;) 3 

= i- r(f,,+ f,+ f* )+r ' / 2 (  f;+ f:+ f 3 + t ' / 2 ( f 0 *  f,+ f,* fo 
+ f o * f ~ + f ' * f ~ , + f , * ~ 2 + ~ * * f , ) - . . .  

and 

C'( t )  * C,( t )  * C"( t )  

= exp( - t~*)*exp( - t f , )*exp( -r f0 )  

= i - t ( f,, + f, + f2j + t'/2( fi + f: + f:) 
+ t'( f, * f,, + f2 * f,, + f2 * f, ) - - (126) * 

where f is the identity operator (Grimm et a1 1969). 
Simulating the action of C 2 ( t )  * 6,( t )  * e,,( t )  on the M configurations of the Monte 

Carlo procedure can be done in the following fashion (Kalos eta1 1974, Anderson 1980): 
(a) Simulate & r ) :  To each configuration "'r, add  a random vector with N com- 

ponents generated, independently, from the normal distribution with zero mean and 
the variance equal to t, in correspondence with ( 6 a ) .  It is not difficult to see that any 
finite statistical distribution with the above mean and  variance can simulate the effect 
of Co(t) with the required first-order-of-t accuracy, and  can be used instead. 

(b)  Simulate C I ( t ) :  Advance the new value of "'r ("'r,, say) to '"r,(t), in correspon- 
dence with (66) .  This has to be done by a numerical integration of (7),  preserving the 
t-accuracy of the algorithm. It turns out to be sufficient (as shown in P 3) to use 

def 

"r0( t )  L- "'ro -t tF( "'r,,) = '"rl. (13) 
( C I  Simulate e2(t): Recall (6c) that 

r)g(r,  t,,) = exp[- t (E(r )  - , ~ l g ( r ,  to)  (14) 

The right-hand side of (14) remains a properly normalised probability density 
where g ( r ,  t , , )=6 , ( r )*60(r ) f ( r ,  t o ) .  

function, i.e. 

e x p [ - t ( E ( r ) - E d I g ( r ,  t o )  d r =  1, (15) 
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only for one particular value of E,. Since the set of M configurations ,rl ( m  = 
I ,  2 , .  . . , M )  represents a sample from g( r ,  to) ,  the proper way of converting it to a 
sample from exp[-t( E (  r )  - E,)]g(r, t o )  is to increase (decrease) the multiplicity of 
each configuration by the factor 

B,  =exp[- t (E("r , ) -Eo)]  m = 1 , 2  , . . . ,  M. (16) 

The only value of Eo which leaves the total multiplicity of the M configurations 
unchanged is 

and, as such, should be used in (16) (Grimm et a /  1971). 

instead (Reynolds er a/ 1982) 
Since B, can, in general, have non-integer values, it is more convenient to use 

M ,  = int( B,  + 6 , )  m = l , 2 ,  . . . ,  M (18) 

where the 5,'s represent random variables, uniform over (0, I ) ,  and  int implies trunca- 
tion of the argument to the nearest smaller integer. Because the expected value of 
each M ,  equals B,, the resulting distribution of configurations will be a random 
sample from (14). Simulating integer multiplicities M ,  is done simply by deleting ,r, 
from the sample when M ,  = 0, retaining it when M ,  = 1, duplicating it when M ,  = 2, 
etc. 

Note that simulating non-integer multiplicities B,  by carrying a statistical weight 
with each configuration would result in a statistically unstable process. A similar 
instability is also observed when using the M ,  values, due to the fact that the exact 
number of new configurations can still vary from M. This needs to be corrected (after 
each time step) by adjusting the number of configurations to M ,  using a random 
(discrete, uniform) deletion or duplication of configurations (Reynolds et a/ 1982). 

The above procedure can be repeated arbitrarily often, thus simulating an  approxi- 
mate solution to (3) (with a changing value of E,, to meet condition (15)). The 
stationary solution will be reached in sufficiently many time steps; from then on one 
will be simulating a time-independent approximate solution to the original equation 
(1). Collecting individual estimates of Eo (17) over many (usually thousands of) time 
steps will reduce the statistical error of the overall estimate (grand mean) to any desired 
level. 

To investigate the nature of the error introduced by the d(  t ' )  term of ( I O ) ,  one 
must first realise that the described technique solves, in effect, the following eigenvalue 
problem 

~ 2 ( t ) * ~ l ( t ) * ~ o ( t ) f ( r , C O ) = f ( r , C O )  (19) 

instead of the original ( I ) .  However (19) can be rewritten (see (126))  as 

which is equivalent to 

( fo+ f, + f2)f- 6y t ) f =  0 (21) 

where dr( r )  = 6(  r2 ) /  r is an  operator in the first and higher powers of t. Using a simple 



Monte Carlo solution of the Schrodinger equation 1331 

perturbation-theory argument, one can show that the relationship between the eigen- 
values of ( 1 9 )  and ( I )  is 

E,(equation(19))=Eo(equation(1))+tE~1’+f2E~2’+. . . ( 2 2 )  

where EL’’ and Eh2’ are coefficients of the perturbation expansion. Thus, to obtain an  
unbiased estimate of Eo (equation ( I ) ) ,  one needs to get a set of estimates of Eo 
(equation (19)) for several (small) values of t, then find the intercept of a polynomial 
least-square fit to ( 2 2 )  (Reynolds et a1 1982). The interesting statistical issue of 
optimising the selection of these r values will not be pursued here. 

3. t2-accurate Green function 

The main goal of this section is modifying the simulation algorithm so as to dispose 
of the tE;’  term in ( 2 2 ) ,  thus making the least-square fit easier and more accurate (it 
can be shown on statistical grounds that the resulting improvement in efficiency is 
dramatic. 

As a starting point we use the results of Grimm er a1 (1969)  and write 

6( t )  = b2( t / 2 )  * 6,( t / 2 )  * 60( t )  * 6,( t / 2 )  * 6*( 1 / 2 )  + 6( t 3 )  ( 2 3 )  

where 6(t3) is an  operator in the third and higher powers of t (correctness of ( 2 3 )  
can be demonstrated easily by the appropriate modification of ( 1 2 6 ) ) .  

However, the simulation of the convolution of operators on the right-hand side of 
( 2 3 )  to the required t 2  accuracy would require three evaluations of F per time step. 
Since evaluating F is the costliest part of the actual computation, it is necessary to 
modify ( 2 3 )  further (note that the algorithm of 8 2 required only one evaluation of F 
per time step). 

As it is G I (  t )  which calls for evaluating F, we have to concentrate on the operator 

6,( t / 2 )  * bo( t )  * G I (  t / 2 )  = G,( t ) .  Rewriting bS( t )  in terms of the corresponding Green 
function gives us 

def  

- [ r ’ ( - t / 2 ) - r ( t / 2 ) 1 2  
G r ( r ’ c  r, t )  = ( 2 ~ t ) - ~ / ’ e x p (  2t ) J ( r r +  r ’ ( - t / 2 ) ) .  

This ensues from two simple integrations and  the fact that 

S (  r”( t / 2 )  - r ’ )  dr” = S (  r” - r ’ (  - t / 2 ) )  J (  r’ + r’( - t / 2 ) )  dr“, 

where J( r ’+  r ’ (  - t / 2 ) )  is the Jacobian of the transformation in parentheses, i.e., more 
explicitly 

J ( r ’ +  r ’ ( - t / 2 ) )  = det(V‘Or’(-t /2)) .  ( 2 5 )  

By V ‘ @ r ’ ( - t / 2 )  we mean an  N by N matrix of all spacial derivatives (with respect 
to r ’ )  of r ’ ( - t / 2 ) ,  det stands for the determinant of the argument. Since 

r ( t / 2 ) =  r + t / 2 F ( r ) + $ t 2 F ( r )  . v F ( ~ ) + .  . . (26a  1 
(see (7) )  and, similarly, 

r ’ ( - t / 2 ) =  r ’ - t / 2 F ( r ’ ) + i t 2 F ( r ’ )  * V ’ F ( r ‘ ) + .  . . ( 2 6 6 )  
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equation ( 2 4 )  can be rewritten (using the shorthand notation F 
as 

G , ( r ’ +  r, t )  = ( 2 ~ r ) - ~ / ’ e x p (  - 

F ( r )  and F ’ I  F ( r ’ ) )  

) [ r’- r - t / 2 (  F + F ’ )  + t 2 / 8 (  F’ - V ’ F ’  - F -  V F )  + . . .I’ 
2t  

xdet(Z - t / 2 V ‘ @  F’+ t 2 / 8 V ‘ @ ( F ‘  - V ’ F ’ )  +.  . .) (27) 

where Z is the unit matrix. 
Eere, we have neglected terms contributing to the third and  higher powers of t in 

the G,( t )  expansion. To  justify this statement, let us investigate the exact relationship 
between an expansion of a Green function G,(r’+ r, t ) ,  and the t-expansion of the 
corresponding operator 6$( t ) .  To this end, we define G R ( r ,  t ;  r ’ )  by 

def 

G , ( r ‘ +  r, r )  = G,(r’+ r, t ) G R ( r ,  t ;  r’) 

with Go(r’+ r, t )  of ( 6 a ) .  When G R ( r ,  t ;  r ’ )  is expanded as a generalised power series 
in t (with respect to zero) and r (with respect to r’) ,  one can easily determine the 
contribution of each individual term of this expansion to & , ( t ) .  Only nine of such 
terms (summarised in table 1 )  contribute within the t’ accuracy of the 6y( t )  operator. 
The contribution of each of them can be determined from 

6 s ( f l d r j  = [ Go(r’+ r, t ) G R ( r ,  t ;  r ’ ) g ( r )  drl,s=, 

and the following standard formulae for differentiating a product of two functions: 

V 2 ( g ( r ) h ( r ) )  = ( V 2 g ) h  + 2 ( v g )  ( V h ) + g ( V 2 h )  ( 3 0 0 )  

V , V 2 ( g h )  = ( V , V 2 g ) h  +(V2g , (G,h)+2(V,g ) (V ,V,h)+2(0 ,V ,g ) (V ,h)  

+ P , g ) ( V 2 h )  + g(V,V’h)  f o r i = l , 2 ,  . . . ,  N (30b)  

and 

V V 2 (  g h )  = (V’V2g) h + 4( V , V 2 g ) (  G,h ) + 2 ( V 2 g ) (  V 2 h )  

+4(V,V,g) (V,C,h)  + 4 ( V , g ) ( V , V 2 h )  + g ( V 2 V 2 h  1 ( 3 0 c )  

where summation (from 1 to N )  over any duplicate index is understood. 
Table 1 summarises the results. 
Now, going back to (271, it is easy to see that the last term in the square brackets 

of the exponent will appear, in the GR ( r ,  t : r’) expansion, as 

- t / 8 (  r’- r ) ( F ’  V ‘ F ’ -  Fa V F )  = - t /8A, , (  r ’ ) ( r ’ -  r ) , (  r ’ -  r ) ,  +. . . (3 1 )  

with Az,(r‘)  = G:(F;VLFi) .  Deleting this term from the Green function requires an  
automatic deletion of 

t 2 / 8 V ‘ O  (F’  * V ’ F ’ )  (32) 

from the determinant of (27) (as Jacobian of the corresponding transformation, it will 
always consist of all spatial derivatives V’ of the square-bracket vector). Note that the 
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Table 1. 

Term of the GR ( r, f ; r ' )  expansion Contribution to 6,(t) 

contribution of the matrix (32) to d,(t) effectively equals to its trace 

t2 /8V'  * ( F '  V'F') + . . .. (33) 

A, quick look at table 1 reveals that (31) cancels against (33) within the t 2  accuracy of 
G,( t ) .  The new t 2  accurate version of G s ( r ' +  r, t )  is therefore 

[ r ' -  r - t / 2 ( ~ +  F ' ) ] ~  
2t 

(277t)-"/2 exp( - ) det( I - t /2V'O F ' ) .  (34) 

Expression (34) represents a probability density function of the random variable 
r', defined by 

n = r ' - r - f t ( F ( r ) + F ( r ' ) )  (35) 

where n corresponds to N-dimensional normal distribution with mean zero and the 
variance-covariance matrix equal to t .  I (and as such can be easily simulated). 

Solving (35) for r' (discarding contributions beyond table 1)  results in 

r '=  r + n - $ t [ F (  r )  + F (  r + n + tF(  r ) ) ] + .  . . (36) 

which clearly suggests the way of simulating r' .  Since F (  r + n + tF( r ) )  equals, within 
the required accuracy, F ( r ' ) ,  it can be used as F ( r )  of the next time step. 

Thus, the complete algorithm to simulate 

& i t ) *  & . , ( i ) *  d2(4t) ( 3 7 )  

requires, in each time step: 
(a )  Advancing each configuration "r by 
( i )  t * "F, with "F as evaluated in the previous time step 
(ii) "'n(0, t ) ,  a random vector with independent components, normally distributed 

with zero mean and standard deviation equal to t"' (any symmetric distribution with 
t,he same first four moments can be used instead, as it correctly simulates the operator 
I + 4 t V 2 +  r 2 / 8 ( V 2 ) * + .  . .) 

(iii) f t ( " F ' -  " F ) ,  where "F' is, for each configuration, evaluated at the new location 
(end of step (ii)). 
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This completes the simulation of by( t ) .  
(b )  Deleting, retaining, or duplicating each new configuration "'r' (end of step (iii)) 

according to 

int{exp(-t[( E ( " r )  + E ( " r ' ) ) / 2  - Eo]} + " U }  (38) 

where 
M 

EO=---' h{ m = l  2 e x p { - ; r ( e ( ' " r ) + E ( ' " r ' ) ) ~ , M }  (39) 

and each "U is a random variable uniform over ( 0 , l ) .  
As discussed in the previous section, it is necessary to statistically stabilise the 

simulation process by a subsequent random adjustment of the total number of configur- 
ations to M. 

Repeating the time steps until the stationary solution is reached, and then collecting 
sufficiently many individual estimates of Eo (equation (39)) will provide an  accurate 
grand-mean estimate of the eigenvalue of 

&t/2 )*Ss ( t )*  & t / 2 ) . f ( r ,  CO) = f ( r ,  E). (40) 

By means of a simple perturbation-theory argument one can prove that this eingenvalue 
has the following time-step dependence: 

Eo (equation (40)) = Eo (equation (1 ) )+  t2EbZ'+. . . . (41) 

Reapplying the complete procedure with several different values of t enables us to 
find Eo (equation ( I ) )  as an  intercept of a least-square fit to (41). 

One should also point out that any discontinuity in F ( r )  will introduce an additional 
error (in terms of equation (41)) of the first order in t. This can be corrected by slightly 
modifying F ( r )  into a continuous function. Care should be taken to ensure that such 
modification represents only a t 2  perturbation of equation (1). 

4. Concluding remarks 

As declared in the introduction, the aim of the paper was a search for an efficient 
Monte Carlo procedure to solve ( I ) .  This has been achieved by developing an  algorithm 
which, in effect, solves (3) instead. As such, the resulting technique can be applied to 
a variety of physical problems, not necessarily related to finding an eigenvalue of 
the Schrodinger equation. To this end, the simulation algorithm can be modified to 
allow fo to have the more general form of -4V D( r ) V  ( D (  r )  being a given function 
of r ) .  Also, proper treatment of various boundary conditions may be easily incorporated 
into the procedure. 
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